Бесщеточный электродвигатель

Я довольно долгое время интересуюсь инструментом Milwaukee, да и сам являюсь владельцем нескольких причиндалов их производства. Но меня всегда смущал факт, что на русскоязычном сайте информации об использованных технологиях кот наплакал, а на сторонних ресурсах сплошной маркетинговый пафос. Поэтому для общего блага решил изложить без лишнего маркетинга собранную мной за все время информацию по технологиям Fuel и не только.

В любом инструменте Milwaukee, выпускаемом под торговой маркой Fuel, применяется три основных технологии:

  1. Бесщеточный двигатель PowerState
  2. Аккумуляторная платформа RedLithium
  3. Электронная система контроля и управления RedLink Plus

Соединенные воедино они нацелены на увеличение мощности, времени работы и срока эксплуатации, а так же снижения возможных негативных моментов при работе инструмента.

Оглавление:

  • Бесщеточный двигатель
  • Двигатель PowerState
  • RedLink Plus
  • Аккумуляторы RedLithium

Бесщеточный двигатель

Самая важная «фишка» современного инструмента любого производителя – это бесщеточные двигатели. С них и начнем. На самом деле, «бесщеточных двигателей», в смысле «не имеющих щеток» довольно много: асинхронные двигатели переменного тока (к слову, одно из изобретений Теслы), шаговые, вентильные (ВД), вентильные реактивные (ВРД) и др. Но речь пойдет о вентильных двигателях.

По сути, это вывернутый наизнанку знакомый каждому двигатель постоянного тока. Магниты перемещаются на ротор, а обмотки — на статор. Щеточно-коллекторный узел, отвечающий за коммутацию обмоток, заменяется электроникой – на ротор устанавливается один или несколько датчиков, отслеживающих его положение (обычно датчики Холла), а контроллер на основе этих данных подает напряжение на нужную в данный момент обмотку, создавая перемену полей и вращение. Отсюда и название «вентильный» – управляемый вентилями (электронными ключами = транзисторами).

Отсутствие коллекторно-щеточного узла (тот самый, который искрит, шумит, снижает КПД и нуждается в регулярном обслуживании и замене) дает следующие плюсы:

  • Срок службы двигателя в идеале ограничен только сроком службы подшипников.
  • Выше показатели КПД за счет отсутствия потерь на скользящем контакте щеток и коллектора, соответственно больше мощность и меньше потребление.

  • Меньше шумят, меньше греются, и практически не создают радиопомех.
  • Более простая и компактная конструкция двигателя (как минимум короче на толщину коллекторного узла).
  • Могут работать в агрессивных и взрывоопасных средах, при повышенной влажности.
  • Переносят большую нагрузку по моменту.
  • Широкий диапазон регулировки скорости вращения (при желании можно «превратить» буквально в шаговый двигатель).
  • Одинаково мощные при любом направлении вращения.

Но есть и недостатки:

  • Необходимо использовать дорогие мощные магниты, довольно сложную и дорогую управляющую электронику.
  • Значительное увеличение ресурса двигателя требует, чтобы и остальные механические и электронные компоненты (редуктор, подшипники, ключи и т.п.) прибора имели соответствующий ресурс.

Все это долгое время препятствовало широкому применению бесщеточных двигателей в электроинструменте. Да и сейчас инструмент с такими двигателями является скорее уделом «премиум класса».

Технология сама по себе не нова, благодаря своим свойствам BLDC двигатели десятилетия используются в компьютерной и бытовой электронике (вентиляторы, floppy, CD/DVD, HDD и др.), в промышленности, радиомоделировании, медицинском оборудовании, авиационной и космической технике, одним словом, везде, где важны их уникальные свойства.


Не так давно данный тип двигателя начал приходить и на рынок электроинструмента. Первый бесщеточный инструмент был выпущен компанией Makita в 2003 году для военной и аэрокосмической промышленности. В 2006 году Panasonic выпустила первый импульсный шуруповерт с бесщеточным двигателем (EY7540LN2S). Milwaukee первые в мире, кто выпустил бесщеточный 12В инструмент (в 2012 году).

За прошедшие 12 лет каждый уважающий себя (и своих клиентов) производитель уже имеет в линейке целые серии инструмента, оснащенного бесщеточными двигателями. Многие производители уже даже не упоминают, что использован именно этот тип двигателя или ограничиваются скромненькой пометкой в характеристиках.

Работа бесщеточного двигателя (BLDC) напрямую зависит от управляющей электроники и, соответственно, требует источника питания постоянного тока. Это главная причина, по которой практически весь бесщеточный инструмент – аккумуляторный. Есть и сетевой, например, у Hilti – они используют вентильный реактивный электродвигатель (SRM, близкий «родственник» шагового двигателя), так же управляемый электроникой с предварительным преобразованием переменного тока в постоянный.

Двигатель PowerState


PowerState – это бесщеточный двигатель, разработанный Milwaukee и выпущенный в начале 2012 года. По заявлениям компании это самый производительный и надежный бесщеточный мотор среди представленных на инструментальном рынке.

Внешне мотор как мотор. Для сравнения на фото внешний вид двигателей 18-вольтовых импульсных шуруповертов. К слову, в самом тесте победил Milwaukee, как и во многих других тестах, так что, возможно, это не пустые обещания производителя.

Согласно тестированию в лабораториях Milwaukee, новый мотор обладает ресурсом, в 10 раз превышающим ресурс мотора, применяемого на моделях предыдущей версии M18 (500 часов у M18 Fuel и 50 часов у M18). Тут, правда, вкрался маркетинг, «50 часов» – до первой замены щеток, а не до полного выхода из строя. У двигателей M12 Fuel заявленный ресурс так же 500 часов. На счет ресурса простых M12 ничего не могу сказать, там даже мотор со встроенными несменными щетками.

За счет использованных технологий, по сравнению с предыдущей линейкой M18, мощность у M18 Fuel выросла на 25% при том, что мотор стал более компактным и менее прожорливым (за счет повышения КПД).

На практике, производитель обещает нам в 2 раза больше мощности и в 4 раза дольше время работы. Заявлено это для M18 Fuel (2604) относительно бесщеточной Makita LXPH05. Для нашего рынка это Makita DHP459 (на унылом официальном российском сайте ее попросту нет, поэтому без ссылки). Насчет мощности близко к правде (крутящий момент макиты – 45 Нм, а милки — 82 Нм). Насчет времени работы, кто его знает… У обоих производителей есть аккумуляторы 18В емкостью от 1.5 Ач до 5 Ач. Ну, вы поняли…

RedLink Plus


RedLink – электронная интеллектуальная система контроля и управления разработки Milwaukee. Подобные системы применяются во всех электроинструментах приличного уровня любых приличных производителей. До переименования в Redlink она называлась DPM (Digital Power Management – Электронное управление мощностью).

Функция RedLink, как и всех подобных систем, заключается в защите от перегрева, перегрузки (выключает двигатель при резком повышении потребления тока до 70 А на протяжении 0.5 сек.) и управлении всеми компонентами инструмента для эффективной работы и предотвращения поломки инструмента из-за человеческих ошибок и неправильного использования.

RedLink Plus явилась дальнейшим развитием системы RedLink. Теперь, к защитным функциям прибавилась еще и оптимизация производительности, за счет регулировки мощности в зависимости от крутящего момента и текущей нагрузки. В процессе работы система отслеживает все основные узлы (батарею, двигатель, говорят, даже курок снабдили собственным микроконтроллером) и подстраивает мощность под нагрузку. Благодаря этому инструмент всегда работает в оптимальном режиме, что положительно влияет на производительность, общую надежность, время работы и срок службы.


С современным развитием программируемых микроконтроллеров уже никого не удивить подобными «высокоинтеллектуальными» системами. Взять тот же Ardiuno, каких там только «чудес» не собирают, и это на простеньком микроконтроллере многолетней давности. В общем, возможности тут действительно большие, и реализация RedLink Plus со всеми её озвученными плюсами Milwaukee вполне по силам.

One-Key

В сентябре вышла система One-Key, с помощью которой каждый может мониторить состояние инструмента, управлять его параметрами и вести инвентаризацию, через любое устройство под управлением Andriod или iOS с беспроводным соединением. Такого в мире инструмента еще не было! Вся информация хранится на облаке и доступна из любой точки, в том числе одновременно из разных. Другими словами, сидя в офисе можно иметь всю информацию о наличии и состоянии инструмента на разных объектах. Система совершенно бесплатна, однако инструмент, поддерживающий такую возможность, появится позже и постепенно; сколько он будет стоить пока не известно.

Аккумуляторы RedLithium


Последние годы все производители переводят линейки своих аккумуляторных продуктов с Ni-Cd на Li-Ion аккумуляторы. И все стараются добиться от этих батарей максимальной работоспособности и долговечности. На это и нацелена, представленная Milwukee в 2011 году, технология RedLithium (дословно – Красный Литий).

Заявленных свойств и характеристик для батарей RedLithium в компании Milwaukee добились за счет использования лучшей аккумуляторной «химии» (почти везде стоят Samsung’овские банки), интеллектуального блока контроля и управления элементами, а так же особой конструкции для уменьшения механических воздействий и защиты от попадания воды.

M18 имеют встроенную защиту от перегрузки, перегрева, чрезмерного разряда (M12 имеют лишь температурный датчик). Контролер и зарядное устройство могут контролировать состояние не только всей батареи в целом, но индивидуально каждого аккумуляторного элемента (в крупных батареях, похоже, блоками по 2-3 элемента).

Все это, по заявлению разработчика, должно дать их аккумуляторам ряд преимуществ, как над предыдущими поколениями батарей, так и над батареями конкурентов. Но, немного смущает, что информация даже из официальных источников (сайт, пресс релизы, каталог и т.п) различается, поэтому в скобках привожу другие встретившиеся мне значения:

  • продолжительность работы увеличена на 40% (в 2 раза);
  • обороты и крутящий момент выросли на 20%;
  • количество циклов зарядки выросло на 50% (от 2 до 10 раз, 1400 циклов);
  • могут работать при температуре окружающей среды до -20°C.

По всей видимости, зависит от того, с чем сравнивать… Цифры, конечно маркетинговые, но по моему опыту и отзывам других, RedLithium очень достойные аккумуляторы. Заряд и разряд происходит достаточно щадяще, у своих M12 я ни разу не замечал, чтобы они заметно нагрелись. Вполне реально, что аккумуляторы прослужат достаточно долго. Кроме того батареи имеют неплохую гарантию: на Li-Ion 2 и 3 года для американского рынка и 2 для нашего (при условии регистрации, и то не для всех аккумуляторов… как обычно, нас обделили…).

M18 имеют довольно надежное и удобное крепление слайдерного типа. Индикатор заряда у M18 находится на батарее (у M12 – на инструменте). Главное, что все аккумуляторы RedLithium, как механически, так и электрически, полностью совместимы с оборудованием предыдущего поколения своей системы и наоборот.

Аккумуляторы M12

На фото три имеющихся у меня батареи M12, уже знакомые нашим читателям из обзоров шуруповерта Milwaukee M12 Fuel (2404) и мультирезака M12 (2426).

Аккумуляторы RedLithium M12 различной емкостиСлева направо:

  1. 48-11-2402 – 12 В, 3 Ач (32 Втч), 400 грамм, 57 минут* (предыдущее поколение RedLithium)
  2. 48-11-2440 – 12 В, 4 Ач (43 Втч), 405 грамм, 76 минут*
  3. 48-11-2420 – 12 В, 2 Ач (22 Втч), 180 грамм, 40.5 минут*

* Время полного заряда, замеренного мной (вполне соответствует заявленному). По современным меркам это довольно долго, могли бы совершенно безболезненно уменьшить время минут на 10-20 за счет немного большего тока – аккумуляторы во время заряда еле теплые, сама зарядка и то больше греется.

У обычных RedLithium (48-11-2401) внутри установлены банки Samsung INR18650-15M на 1500mAh, а RedLithium XC 2.0 собраны из банок INR18650-20R на 2000mAh. И те и другие – отличные аккумуляторы, рассчитанные на высокий ток нагрузки (у 15M даже немного больше). Емкость батарей с этими аккумуляторами соответствует заявленной. Большие батареи (RedLithium XC 4.0) разбирать мне жалко, но полагаю, что там должны быть те же INR18650-20R, как и в маленьких.

Разобранный аккумулятор RedLithium M12 48-11-2420

Схема оснащена термодатчиком и позволяет производить заряд и контроль каждой банки батареи по отдельности (как и было заявлено). Каких-либо «интеллектуальных» компонентов внутри аккумуляторов M12 нет.

www.toolgir.ru

Немного терминологии


Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор – магниты, статор – обмотки.

Brushless

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы “ну это как синхронник”, или еще хуже “он похож на шаговик”. Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор “кормит” двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ – это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел – коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники – просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током – это обмотка двигателя, а переключением занимается коллектор – устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

Brushed

То же самое делает и электроника, управляющая бесколлекторным двигателем – в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких – без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) – применяют двигатели с датчиками.
Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная.  Фактически фазы – это обмотки двигателя. Поэтому если сказать “трехобмоточный”, думаю, это тоже будет правильно. Три обмотки соединяются по схеме “звезда” или “треугольник”. Трехфазный бесколлекторный двигатель имеет три провода – выводы обмоток, см. рисунок.

Brushless

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

Brushless

Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться “шагами” на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.

Бесколлекторные моторы “на пальцах”
Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:

www.avislab.com

Электродвигатели сегодня широко распространены во многих отраслях, в частности в промышленности и робототехнике. Кроме того, существует большой спрос на малые, эффективные электромоторы с высоким и низким крутящим моментом, а также на электродвигатели различных мощностей для автомобильного сектора.

Инженеры, работающие в этих областях, могут выбирать между коллекторными (щеточными) и бесколлекторными (бесщеточными) электродвигателями. Все они работают в соответствии с законом индукции Фарадея, тем не менее, между этими моторами есть ключевые различия, которые могут быть неочевидны для новичков в электроприводе.

Коллекторные и бесколлекторные электродвигатели постоянного тока различаются тем, как электрический ток передается на коммутатор или электромагниты, которые заставляют ротор продолжать вращаться. По сути, в щеточном двигателе ток передается механически через металлические щетки, тогда как в бесколлекторном двигателе ротор поворачивается благодаря электронике, без необходимости физических контактов.

Электродвигатели постоянного тока функционируют посредством создания магнитных полей, притяжение и противодействие которых поддерживают центральное вращение. В щеточном двигателе фиксированные магниты располагаются с обеих сторон вращающегося электромагнита, один ориентирован на положительный полюс, а другой — на отрицательный. Электромагнит формируется рядом катушек или обмоток (обычно три обмотки, размещенные в равноотстоящих точках вокруг ротора), и называется коммутатором. Когда электрический ток проходит через эти обмотки, они генерируют собственное магнитное поле, которое отталкивается и притягивается к магнитным полям, генерируемым фиксированными магнитами. Ток передается на обмотки коммутатора металлическими щетками, которые вращаются вместе с ротором. Когда двигатель включен, ток подается на электромагниты, магнитные поля которых отталкиваются одним неподвижным магнитом и притягиваются к другому, заставляя ротор вращаться. Когда ротор вращается, металлические щетки контактируют с каждой обмоткой последовательно, поэтому сопротивление и притяжение между полученными магнитными полями и полями статических магнитов поддерживают вращение электромагнита.

В бесщеточном двигателе постоянного тока позиции фиксированных магнитов и электромагнитных катушек меняются на противоположные. Теперь фиксированные магниты размещаются на роторе, а обмотки размещаются в окружающем его корпусе. Двигатель работает благодаря току, проходящему через каждую обмотку последовательно. Это отталкивает и притягивает поля неподвижных магнитов и поддерживает вращение ротора, к которому они прикреплены. Для работы такого двигателя обмотки коммутатора необходимо синхронизировать с неподвижными магнитами, чтобы поля постоянно находились в оппозиции, а ротор продолжал вращаться. Для этого требуется электронный контроллер или микропроцессор для координации приложения тока к каждой электромагнитной катушке.

Главным преимуществом бесщеточных двигателей является то, что передача тока в коммутатор не является механической. Поскольку коллекторные двигатели зависят от физического контакта металлических щеток с обмотками коммутатора, они подвержены снижению эффективности из-за трения с контактами, а также, как и все механические детали, изнашиваются после длительного периода использования. Поскольку бесщеточные двигатели меньше греются (из-за отсутствия трения), они могут работать на больших скоростях (потому что большое тепло мешает магнитным полям).

Главным преимуществом коллекторных двигателей постоянного тока является то, что они дешевле и проще в конструкции и обслуживании, чем бесколлекторные двигатели, поскольку их механизм менее сложный.


© digitrode.ru

Теги: электропривод

digitrode.ru

Бесщеточный шуруповерт

Шуруповёрт бесщёточный

Привычные всем аккумуляторные шуруповерты оснащены коллекторными электродвигателями с переключением тока в обмотках якоря при помощи щеток. Бесщеточные шуруповерты, в отличие от них, комплектуются бесколлекторными электродвигателями. Функции коллекторно-щеточного узла (КШУ) выполняются электронным узлом управления. Разница состоит в том, что он переключает ток в обмотках статора, а не ротора. Якорь же не имеет катушек. Для исключения из конструкции скользящих контактов его магнитное поле создается постоянными магнитами. Момент подачи тока в статорные обмотки определяется при помощи датчиков положения ротора (ДПР), которые работают на основе эффекта Холла.

Импульсы ДПР совместно с сигналом регулятора скорости вращения обрабатываются микропроцессором. Результатом обработки является формирование электрических импульсов, модулированных по ширине. Это так называемый сигнал ШИМ. Результирующая последовательность импульсов подается на усилители тока (инверторы). Их выходы связаны с обмотками статора. Инверторы, в соответствии с выходным сигналами микропроцессорного узла, коммутируют ток в катушках статора. Переменное магнитное поле, вызванное импульсами этого тока, взаимодействуя с постоянным магнитным полем ротора, приводит к вращению якоря.

Достоинства и недостатки электроинструмента без щеток

Плюсами шуруповертов без щеток являются следующие качества:

  1. Простота регулировки частоты вращения. Возможность изменения ее в широких пределах.
  2. Отсутствие коллекторно-щеточного узла. Это исключило возникновение связанных с ним неисправностей и упростило техобслуживание инструмента.
  3. Хорошая переносимость кратковременных перегрузок по крутящему моменту.
  4. Экономный расход энергии. КПД бесщеточных двигателей около 90%.
  5. Более длительная наработка на отказ, чем у инструмента с КШУ.
  6. Отсутствие электрического искрения и, как следствие, безопасность работы во взрывоопасных смесях газов.
  7. Небольшие размеры и вес.
  8. У моделей с реверсом – одинаковая мощность в обоих направлениях вращения.
  9. Отсутствие падения скорости вращения при увеличении нагрузки на патрон.

Из минусов этих инструментов замечен только один. Они несколько дороже своих коллекторных конкурентов.

Какой шуруповерт выбрать

Сравним основные характеристики бесщеточных и коллекторных аккумуляторных дрелей:

Преимущества бесщёточного шуруповёрта

  • КПД бесщеточных выше почти в 1,5 раза (90 против 60%). Значит, при одинаковой емкости аккумуляторных батарей бесщеточный будет работать без подзарядки значительно дольше.
  • Среднее время безотказной работы бесщеточных двигателей больше, чем коллекторных.
  • Масса и размеры первых меньше, чем вторых.

Проанализировав достоинства и недостатки аккумуляторных шуруповертов, можно с уверенностью сказать, что модели с бесщеточным двигателем – лучше. Если б стоимость сравниваемых шуруповертов была близка, выбирать следовало бы лучший.

Но преимущества бесщеточных довольно дорого стоят. Вопрос состоит в том, нужны ли они вам за эту разницу в цене.

Есть люди, которые работают исключительно дешевым китайским инструментом. Они объясняют это тем, что вечный инструмент еще не придумали. И любой, даже самый дорогой, когда-нибудь выйдет из строя, тогда нужно будет тратить время и деньги на его ремонт.

Недорогой инструмент до выхода из строя обычно успевает отработать деньги, потраченные на его покупку. Поэтому его не жалко выбросить, недорого купить такой же и опять работать новым. Как говорится, сколько людей – столько и мнений. Выбор за вами!

 

pro-instrument.com

мотор колесо бесщеточноеПопробуем разобраться в различиях щеточных и бесщеточных электродвигателей, чтобы суметь должным образом оценить преимущества, собственно, бесщеточных мотор-колес.

Бесколлекторный электродвигатель постоянного тока – наиболее распространенная разновидность двигательного механизма в электровелосипедах. Мотор-колесо такого типа позволяет переоборудовать практически любой городской велосипед на электрический, практически не нарушая его функционального предназначения, но значительно расширяя его возможности.

Подобного рода двигатели нашли широкое применение также и среди скутеров, мотоциклов, автомобилей, произвев настоящую революцию в области электротранспортной индустрии и вывев её на кардинально новый уровень возможностей. Надежность, высокий КПД, небольшая стоимость, отличная удельная мощность – малая часть преимуществ электродвигателей данного типа.

Основная задача коллекторно-щеточного механизма состоит в подаче напряжения от аккумуляторов на обмотки электродвигателя. Главным же недостатком коллекторного механизма является его быстрый износ, более того – уровень этого износа в значительной степени определяется мощностью электромотора. Разрушению элементов щеточного мотор-колеса способствуют: повышенная температура эксплуатации, электроэрозионные процессы, загрязнение продуктами износа щеток.

full 332503d67299d569c69edd129eaa4918Коллекторно-щеточный узел является одной из причин снижения КПД электромотора, посредством потребления значительного количества энергии. С целью повышения уровня эффективности работы мотор-колеса было решено передать функцию управления его работой контроллеру. В самом же электрическом моторе поменяли местами обмотки и постоянные магниты. Помимо этого в статор встроили три датчика положения ротора (датчика Холла). Специальный электронный контроллер, воспринимая цифровую информацию от магнитных датчиков Холла, обеспечил выполнение поставленных задач, подавая тяговое напряжение на обмотки статора, и тем самым формируя магнитное поле в двигателе путем переключения его обмоток с регулируемой частотой. От частоты этих переключений прямо зависит скорость вращения мотор-колеса. Обращаем Ваше внимание на то, что контроллеры для щеточных и бесщеточных моторов являются несколько разными устройства, и по этой причине не могут быть взаимозаменяемыми, поскольку выполняют они несколько разных функций.                                                       Датчики Холла

Использование в мотор-колесах сильных постоянных магнитов из сплавов редкоземельных металлов позволило отказаться от щеточного механизма и повысить таким образом КПД двигателя до рекордных 95%. Магниты из редкоземельных элементов сделали возможным получение высокого уровня магнитной индукции и уменьшение размеров ротора.

мотор колесо бесщеточное 1

В целом, принцип работы бесколлекторного электродвигателя основывается на коммутировании управляющим электронным контроллером обмоток статора так, чтобы вектор магнитного роля статора всегда оставался перпендикулярным вектору магнитного поля ротора. Управление током, проходящим через обмотки статора, и, следовательно, вектором его магнитного поля, со стороны контроллера производится при помощи широтно-импульсной модуляции (ШИП): информация о положении ротора обрабатывается «микропроцессором», который и вырабатывает управляющие ШИП-сигналы. Обычно мотор-колеса данного типа имеют трехфазную обмотку. Самым распространенным способом подачи напряжения является поступления питания на две из них благодаря работе датчиков Холла.

67796409 3 644x461 prazdnichnoe-predlozhenie-ekonomnoe-ne-zaspitsovannoe-motor-koleso-veloaksessuaryКоллекторный электродвигатель – двигатель, в котором датчиком положения ротора и переключателем тока в обмотках выступает щеточно-коллекторный узел. В коллекторных двигателях используются стационарные металлические контакты (щетки) для передачи электрической энергии на катушки обмоток ротора. Как известно, вращение магнитного поля – это основа работы электрического мотора. В отличии от бесколлекторных двигателей, в которых магнитное поле изменяется импульсно, в коллекторных двигателях оно меняется механически при помощи якоря и щеток, скользящих по коллектору. При этом наблюдается циклическое изменении тока, протекающего через область электромагнитных колец, с обратного на прямой и наоборот. Изменение направление магнитного поля происходит каждый раз при смене направления тока.

Основными достоинствами коллекторных электродвигателей является простота их изготовления, эксплуатации и ремонта. В двигателях этого типа контроль за скоростью вращения может производится при помощи простейшего переменного резистора. Конструктивно двигатель без датчиков Холла конечно проще, чем с ними, но данная система имеет целый ряд недостатков. Электрические моторы такого плана плохо стартуют, не развивают с места высокого показателя вращающего момента, имеют низкий показатель КПД, требуют регулярного обслуживания из-за постоянного трения и износа щеток, к тому же, система определения положения ротора без датчиков функционирует довольно ненадежно.

В коллекторном двигателе контроллер используется лишь для регулировки напряжения, в бесколлекторном же его предназначением является как регулировка напряжения, так и переключение фаз (тут на помощь ему приходят уже известные нам датчики Холла). Бесщеточные мотор-колеса несколько отличаются от щеточных своим конструктивным исполнением, к тому же, эти двигатели значительно более надежны и долговечны по той простой причине, что в них нет щеточного-контактного узла, нет трансмиссии, подверженным быстрому износу и загрязнению.

 

Достоинства бесщеточных мотор-колес:

отсутствие узлов требующих частого техобслуживания и быстро поддающихся износу: нет щеточного узла, который постоянно трется и создает искры;

высокие показатели КПД (выше 90%);

широкий диапазон изменения частоты вращения;

большая перегрузочная способность по моменту;

быстродействие и динамика;

высокая надежность и большой срок службы за счёт отсутствия коллекторно-щеточного механизма;

малый уровень нагрева мотора при работе в режимах перегрузок.

 

Недостатки бесщеточных мотор-колес:

более высокая стоимость по сравнению с щеточными, обусловленная использованием дорогостоящих редкоземельных магнитов и более совершенной конструкцией ротора;

значительно более сложная система управляющего работой электромотора механизма.

 

Недостатки щёточных электродвигателей:

быстрый износ щеток и коммутатора;

необходимость проведения периодического технического обслуживания: чистки щеток и коммутатора;

низкий показатель вращающего момента с места;

снижение КПД моторов, уменьшение срока службы аккумуляторных батарей, замедление работы электродвигателей по причине трения щеток;

меньший показатель соотношения мощности к весу моторов.

 

Выводы:

Бесщеточные мотор-колеса можно рассматривать как обратную версию щеточных электродвигателей, однако данный тип двигателя является более совершенным: в нем нет щеток, нет коллекторов. Бесколлекторные моторы более мощны, надежны, эффективны, со значительно более высокими показателями коэффициента полезного действия.

Работа бесщеточного электрического мотор-колеса основывается на вращении магнитного поля при помощи электронного контроллера. При вращении магнитное поле притягивается либо же отталкивает постоянные магниты. Электрический двигатель приводится в движении воздействием поступающего от аккумуляторных батарей тока, но при его вращении также генерируется ток и обратное электромагнитное поле. Максимальная скорость вращения мотор-колеса в значительной степени определяется напряжением и создаваемым обратным электромагнитным полем. Увеличение скорости движения магнитов происходит путем простого увеличения силы магнитного поля. При увеличении продолжительности подаваемых импульсов (широтно-импульсная модуляция) магнитное поле становится в значительной степени сильнее. Ротор вращается быстрее по причине роста показателя вращательного момента. Исходя из этого, можно утверждать, что единственное, что физически может испортится в этом типе двигателя – это магнит (что очень маловероятно) и датчики Холла. В общем-то, бесколлекторное мотор-колесо практически вечно!

sergey-volter

www.electra.com.ua


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.